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1.  Introduction 

The change-point problem can be considered one of the central problems of 

statistical inference, linking together statistical control theory, theory of 

estimation and testing hypotheses, classical and Bayesian approaches, fixed 

sample and sequential procedures.  It is very often the case that observations 

are taken sequentially over time, or can be intrinsically ordered in some other 

fashion.  The basic question is, therefore, whether the observations r.-present 

independent and identically disbtibuted random variables, or whether at least 

one change in the distribution law has taken place. 

This is the fundamental problem in the statistical control theory, testing 

the stationarity of stochastic processes, estimation of the current position of 

a time-series, etc.  Accordingly, a survey of all the major developments in 

statistical theory and methodology connected with the very general outlook of 

the change-point problem, would require review of the field of statistical 

quality control, the switching regression problems, inventory and queueing 

control, etc.  The present review paper is therefore focused on methods developed 

during the last two decades for the estimation of the current position of the 

mean function of a sequence of random variables (or of a stochastic process); 

testing the null hypothesis of no change among given n observations, against 

the alternative of at most one change; the estimation of the location of the 

change-point(s) and some sequential detection procedures.  The present paper 

is composed accordingly of five major sections.  Section 2 is devoted to the 

problem of estimating the current position of a sequence of random variables, 

specifically discussing the problem with respect to possible changes of the 

means of independent normally distributed random variables.  We review the 

studies on his problem of Barnard [6], Chernoff and Zacks [14], Mustafi [45] 

   • • *           -       •     . . - 
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and others.  Section 3 is devoted to the testing problem in a fixed sample.  More 

specifically, we consider a sample of n independent random variables.  The null 

hypothesis is HQ: F.. (x) • ... • F (x) , against the alternative, 

H1: F1(x) • ... • F (x) ; F .(x) - ... • F (x) , where T«1,2,...,n-l designates 

a possible unknown change point.  The studies of Chernoff and Zacks [14], Kander 

and Zacks [36], Gardner [21], Bhattacharya and Johnson [9], Sen and Srivastava [57] 

and others are discussed.  These studies develop test statistics in parametric and 

non-parametric, classical and Bayesian frameworks.  Section 4 presents Bayesian 

and maximum likelihood estimation of the location of the shift points.  The Bayesian 

approach is based on modeling the prior distribution of the unknown parameters, 

adopting a loss function and deriving the estimator which minimizes the posterior 

risk.  This approach is demonstrated with an example of a shift in the mean of a 

normal sequence.  The estimators obtained are generally non-linear complicated 

functions of the random variables.  From the Bayesian point of view these estimators 

are optimal.  If we ask, however, classical questions concerning the asymptotic 

behavior of such estimators, or their sampling distributions under repetitive 

sampling, the analytical problems become very difficult and untractable.  The 

classical efficiency of such estimators is often estimated in some special cases 

by extensive simulations.  The maximum likelihood estimation of the location 

parameter of the change point is an attractive alternative to the Bayes estimators. 

Hinkley [26-30] investigated the asymptotic behavior of these estimators.  The 

derivation of the asymptotic distributions of these estimators is very complicated. 

We present in Section 4 Hinkley's approach for the determination of the sampling 

distributions of the maximum likelihood estimators.  Section 5 is devoted to 

sequential detection procedures.  We present the basic Bayesian and classical 

- 2 - 
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results in this area.  The studies of Shiryaev [60,61], Bather [7,8], Lorden [43] 

and Zacks and Barzily [69] are discussed with some details.  The study of Lorden [43] 

is especially 3ignificant in proving that Page's CUSUM procedures [47-49] are 

asymptotically minimax. 

The important area of switching regressions have not been reviewed here in any 

details. The relevance of the switching regression studies to the change-point 

problem is obvious. Regression relationship may change at unknown epochs (change 

points), resulting in different regression regimes that should be detected and 

identified.  The reader is referred to the important studies of Quandt [51,52], 

Inaelman and Arsenal [35], Ferreira [19], Maronna and Yohai [44] and others. 

An annotated bibliography on the change-point problem was published recently 

by Shaban [59]. The reader can find there additional references to the seventy-one 

references given in the last section of the present paper. 

2.  Estimating the Current Position of a Process 

G. Barnard, in his celebrated 1959 paper [6] on control charts and stochastic 

processes, suggested to consider the problem of estimating the current position of 

a process as a tool of statistical control.  The problem of estimating the current 

mean of a process requires modeling of the possible change mechanism of the mean 

function.  In the context of statistical control problems the mean, as function 

of time, is generally assumed to commence at an initial point,  u» ,  known or 

unknown, and then change abruptly at unknown epochs,  T..,T-,... 

Let X ,X~,...,X be a sequence of random variables. We denote by \i.(i=l,...,n) 

a location parameter of the distribution of X . If the random variables are normally 

distributed then p  is the expected value (mean) of X. . 

Generally, neither the change points T-,T_,...  nor the size of changes are 

known, and the problem of estimating y  , after observing X.,X_,...X  , might 

have no better solution than the trivial estimator u =X , unless the phenomenon 
n n r 

- 3 
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studied allows proper modeling.  In the present paper we discuss the models adopted 

by Barnard [6] and by Chernoff and Zacks [14], and the estimators of the current 

position which they derived from these models.  The related study of Mustafi [45] 

is also presented. As will be shown, time-series procedures of exponential 

smoothing are strongly related to linear unbiased estimator studied in [6] and [14]. 

2.1 Barnard's Estimator of u 
 n 

Consider the given sequence of observations in a reversed time manner, i.e., 

X ,X  ,X -,...  Barnard adopted the basic assumption that the corresponding 

random variables are independent and normally distributed, with the same known 

2 
variance  (a »1) .  Suppose that the observations are taken at regular time intervals 

of 1 unit.  Barnard's model assumes that the epochs of change t.,T-»..«  follow a 

Poisson process with intensity X  (per time unit). At each of the random change 

epochs T1,T„,...  the size of the shift in the mean is a random variable,  6 , 

2 
following a normal distribution,  N(0,a ) . Moreover,  S.,,6«,... are mutually 

independent, and the sequence {6} is independent of  {T} .  Thus, if J ,J_,... 

designate the number of change epochs between,  X and X 1,X   and X « , then 

J..,J-,...  is a sequence of i.i.d. (independent and identically distributed) random 

variables having a Poisson distribution, P(A) .  The model is X • u + E 
n   n   n 

i 

(2.1) Xn-1 - ^n + Jfk + Vl      • «.....«-l 
k-1 

Ji 2 
where S - £ 6  and E1,...,E  are i.i.d.  N(0,1) .  Assuming that  X and o 

j=l J       X     n 

are known, Barnard provided the general form of the minimum mean square error 

(MSE) linear estimator of u  , and 
n 

- 4 - 
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that of its (formal) Bayes estimator (which is actually called by Barnard "the 

mean-likelihood estimator").  It is shown that the minimum MSE linear estimator, 

is the exponential smooting estimator 

(2.2) u - B X + A £ 
n     n     n-i 

The (formal) Bayes estimator of u  is of the form 

»  -l 
I V  X 

(2.3) u - I    »<i |T)  -? ~n. ~n 
n       .n _n      -1 

n _n _n ,n 

where 1  is an n-dimensional vector of l's;  j - (j1 ,..., j .)  is a particular 

realization of Jn, — ,J . j X • (X ,X ,, ,X,); ir(j |X )  its posterior 
1     n-1 _n    n n-1     1    _n ,n 

probability, and V  the covariance matrix of X  corresponding to a given 
n _n 

realization 1 
,n 

2.2 Chernoff and Zacks1 Model and BLUE of \i 
 n 

Chernoff and Zacks assumed a model different from that of Barnard, although 

there are general similarities. According to their model, if u • E{X.}  then 

(2.4) v±  = ui+1 + J±  6     ,i-l,...,n-l 

where J.  is a random variable assuming the value 1 if there is a shift in the 

mean between the ith and (i-H)st observations, and the value 0 otherwise. 

2 
Furthermore,  5.,...,6  ,  are i.i.d.  N(0,a ), J,,...,J ,  are i.i.d., 

1     n-1 1'   ' n-1 

P[J,=1] • p (i-l,...,n) . Let J - (J,t...,J .)  and 6 - (6.,...,6  -) . 

Chernoff and Zacks showed that the minimum variance linear unbiased estimator 

(BLUE) of u  is 
n 

n-1 

(2.5) w 
n      n-1 

1+  lh 
i+1 

5 - 
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where 

(2.6)       Z± 

and 

(v1_1-l)/vi_1...vn_2(vn_1-l)   , i-2,...,n-l 

l/v1v2...vn_2(Vl-l) , i-1 

(2.7) vk= 

2+02p       , if k=l 

2  -1 
2+a P-v, ,   , if k=2,...,n-l 

In the following table we illustrate some of these weights: 

Table 2.1. Weights for the BLUE 

2 , a =1 , p=.l 

nX1    1       2       3       4 

2 .909 1.000 

3 .763 .840 1.000 

4 .606 .666     .793    1.000 

5 .464 .510     .735     .745    1.000 

2 " — 
Notice that when pa =0 then £,=1 for all i*l,...,n-l .  In this case u =x 

i n n 
2 

is the common sample mean.  On the other hand, when po* • " then the weights £ 

^((p.2)-«-»/ diminish to zero  in a geometric rate, i.e.  £ 

Accordingly, as n increases, the weight given to observations at the beginning 

2 
of the sequence is close to zero.  In particular, if pa  is large, it is sufficient 

to base the estimator only on the last m observations. Mustafi [45] investigated 

the characteristics of such estimators based on the last block of m observations. 

- 6 - 
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2 
Moreover, Mustafi showedthat, if the value of c-po  is unknown, it can be estimated 

consistently by 

(2.8) 

where 

c • 

2  2 
6S^-2S2 

» 
S2"2S1 

«- 
1 

n-1 

n-1        2 

i=l 

*• 

1 n-2 

n-2 Ji WA) 
(2.9) 

Let p    denote the UMVU estimator of u  , based on the last m observations 
n,m n 

in which c is replaced by its estimate c .  According to Mustafi1s procedure, 

the first n-m observations are used to estimate c by (2.9), and the estimator 

c of c is substituted in (2.6)-(2.7) to obtain the corresponding weights £. 
1 ,m 

Notice that the estimator obtained in this manner is not BLUE anymore.  Furthermore, 

c might be negative (with positive probability).  In such a case,  £.   is 
l,m 

+ 
replaced by its positive part £.  • max(0,£.  ) .  Mustafi established that 

l,m itm 

, for each n,m (i) n,m    n 

(ii) V{u   } <; 1 + o2p(m- 
n,m 

and 

(iii) lim V{y   } -  V{u } 
n-c»    n'm     m 

where y  xs the BLUE estimator based on the last m observations, with known c m 

2.3 Chernoff-Zacks Bayes Estimators of y n 

2 
Assuming that p  has a prior normal distribution N(0,T ) , we obtain that 

n 

the posterior distribution of p  , given X  and J -(J,,...,J ,)  is normal, 
n  °     „n      _n  1'    n-1 

- 7 - 
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(2.11) 

where 

~n T-2 + l ~n ' t"1 (J ) 1 aj   ~n ~n 

~n I + a J J' and 

(2.12) 

J-a   JM   •••   *J » 1    2 n-1 

n-1 

SJ n-1 

0' 

Let PQ(j) be a prior probability function of J  .  The posterior probability 

function of J  , given X , is then ~n        ~n 

(2.13) P-OIXJ 
p(j)n(XjO,j: (j)) n ~  ~n *, *    ~ 

n  ~n I  Pn(J)n(XI0,{ (j)) 

U     I      2 
A (J) " I(J) + T 11 ,  and n(x |0,T)  is the multivariate normal p.d.f. 

at  XJJ . with mean vector 0 and covariance matrix | .  Finally, the Bayes 

where 

estimator of y  is n 

(2.14) 
n    • n ~ ~n  n «, 

{j} 

- 8 - 
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This estimator is obviously non-linear, due to the non-linear structure of the 

posterior probabilities.  The structure of the Bayes estimator (2.14) is the same 

as that of Barnard's mean-likelihood estimator (2.3).  The problem with these 

estimators is in their degree of complexity.  The sample space of J  consists 
~n 

of 2 
n-1 

different points and it is a very difficult matter to choose a proper 

prior distribution.  Even if we ascribe, a-priori, each of these 2 
n-1 

points 

equal probabilities, we have to make a significantly large number of calculations 

(B) 
to determine u   .  In many problems of interest it is unreasonable to assume 

n 

that the mean is likely to shift between any two observations.  If it is reasonable 

to assume that the number of possible shifts among a relatively small number of 

observations is at most one, the computations will be significantly simplified. 

The Bayes estimator based on the assumption of at most one change (AMOC) is 

presented in the next section. 

2.4 The AMOC-Bayes Estimator of \i 
 n 

According to the AMOC model we assume that among the given n observations 

there is at most one change.  Let t be an integer valued parameter assuming 

the values 0,1,...,n-1 .  If T«1 , the first  t  random variables have the same 

If  T-0 

there was no shift in the mean among the n observations.  Let ir(t)  be the 

prior probability of  {t-t} .  The conditional Bayes estimator, for a given value 

of  t , is 

mean u +6 and the last n-t random variables have the mean y 
n n 

(2.15) Pn(t) 
nX + a t(n-t) X 

n      n-t 
2 

n + a t(n-t) 

1    it 

where X - - T X,  and X* 
n  n ^ i 

,   n 

* - — I     x4 
•"*  n-C j-t+1 3 

, t-0,...,n-l, 

- 9 
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Furthermore, the posterior probability of  {T«t} , given X  , is 
mB 

Tr(t)expf^- 

(2.16)        ir(t|X ) 
[2       n2 + o2t(n-t)n   J 

~n     (n+a2t(n-t))ls  D 
n 

where 

V    irci)        (l  ^2(n-J)2(Xj-x;H)
2l 

_ = I    jr" r- exPy?'  5 5 f 
j-0 (n+o j(n-;]))^    Cz    n +aZj(n-j)n   > 

(2.17)     D 

The Bayes estimator of V      in the AMOC model is accordingly 

n-1 
(2.18) yn = I    7T(j IXn) un(j) 

2.4.1.  Adaptive AMOC-Bayes Estimation 

The AMOC procedure can be applied on the last m observations sequentially, 

starting with m«2 and increasing it until a strong indication emerges that a 

shift has taken place.  The procedure is then stopped and u  is estimated 
n 

according to (2.18) on the basis of the last m observations.  This process is 

summarized in algorithm: 

Step 0.  Set m«2 . 

Step 1.  Set Y »Xn  .,...,Y -X  . 
i n-m+i     m n 

Step 2.  Compute ir(t|Y ) , t»0,...,m-l . 
mB 

If TT(0|Y ) - max  ir(j |Y ) 
0<j<m-l 

go to Step 3; else go to Step 4 . 

Step 3.  Set m * m+1 and go to Step 1. 

* 
Step 4.  Let k » least j • l,m-l such that 

Tr(j|Yj - max  »{til ) . 
~m 0<t<m-l 

Step 5.  Apply estimator (2.18) on the last m-k observations. 

- 10 - 
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The following numerical example Illustrates the adaptive estimation process 

according to the above algorithm.  Consider the following n"9 observations on 

independent, normally distributed r.v.'s: • X- - 2.613, X- - 1.661, X. - 1.814, 

X4 - 1.274, X5 - 2.616, Xg - -.326, X? - -2.422, Xg - -.119, Xg - -.034  . 

2 
Assume that a =3 and the prior distribution is 

irm(0) - (l-p)"
1"1 

ir (t) - p(l-p)  "     , t-l,...,m-l    , 
m 

with P".2 .  The posterior probabilities of the change points, given the last 

m observations, are given in the following table. 

Table 2.2.  Posterior Probabilities of the Shift Locations 

t 
m 0 1 2 3 4 

2 .9298 .0702 

3 .6804 .0722 .2474 

4 .7844 .0660 .0954 .0542 

5 .1765 .0107 .0088 .0890 .7149 

According to these posterior probabilities there is a strong indication that a 

shift took place between the fifth and the sixth observation.  The AMOC Bayes 

estimator based on the last four observations is yq . • -.6301 . 

Experience with the application of this method on various data sets shows that it 

could be too sensitive as an estimator of the location of the shift points.  Farley 

and Hinlch [18] showed in a series of simulations that the above procedure leads to 

a high proportion of indication of change when there are none (false alarms).  This 

2 
problem can, however, be overcome by proper choice of the parameters p and a 

-  11 - 
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2 
o  should be at least 3 or 4 times the variance of the random variables  Ei»• • •iL • 

As an estimator of the current position the above procedure performs very well. 

This was also reported by Farley and Hinich in [18].  We provide here some numerical 

comparisons of the characteristics of the UMVU, AMOC-Bayes and the Adaptive AMOC- 

Bayes estimators of y  , based on some simulation experiments.  These results are 

taken from Chernoff and Zacks [14].  In these experiments 100 replicas of samples 

of size n=9 were simulated from normal distributions, with means u.  and variance 1. 

In all cases  uq
=0 •  We compare the means and MSE, over the 100 replicas, of the 

following estimators: 

u,:  UMVU with a
2-3, p-.2 

2 
p_: AMOC-Bayes, a  "3, p*.2 

2 
y_:  Adaptive AMOC-Bayes,  a *3, p».2 

The models of shifts in the means are: 

Model I:  A random change between every two observations, i.e.  u, ~ N(0,2) 

(i=l,...,8) 

2  8 
Model II: u. • a      I    \  \ 

1     k«i K K 

J.,J»,...  are i.i.d. Bernoulli, with p".l, am2 

n-.rij,...  are i.i.d.   N(0,1) 

Model III:  No change. 

The simulation estimates are: 

- 12 - 
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Table 2.3.  Simulation Characteristics of Three Estimators 

Estimates 

Model vl M2 v3 

I -.2718 -.1866 -.0827 Mean 
2.1406 3.3140 1.0235 MSE 

II .0847 .0539 .0525 Mean 
.4460 .4337 .4135 MSE 

III .0255 .0027 -.0122 Mean 
.3078 .6112 .2679 MSE 

The above results indicate that the Adaptive AMOC-Bayes estimator is performing 

as well or better than the UMVU or the AMOC-Bayes, especially when the actual 

process of shifts in the means is different from the one assumed in the model. 

3.  Testing Hypotheses Concerning Change Points 

The problem of testing hypotheses concerning the existence of shift points 

was posed by Chernoff and Zacks [14] in the following form. 

Let X..,...,X  be a sequence of independent random variables having normal 

distributions N(9lfl) , i-l,...,n .  The hypothesis of no shift in the means, 

versus the alternative of one shift in a positive direction is 

% 

vs 

Hl; 91 

n   0 

9T " 90 ; Vl - e - en + 6  , 
n   0 

where T"l,...,n-1 is an unknown index of the shift point,  6 > 0 is unknown 

and the initial mean 9- may or may not be known. 

Chernoff and Zacks showed in [14] that a Bayes test of H  versus H. , for 

5 values close to zero, is given by the test statistic 

- 13 - 
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n-l_ 
l     (i+1)  X± ,   if    90    is known 

i-1 

(3.1) Tn 

n-1        _ 
I    (i+1) (Xj-X )    , if 9Q is unknown, 

i-1 

where X  is the overage of all the n observations.  It is interesting to see 

that this test statistic weighs the current observations (those with index close 

to n) more than the initial ones. However, the weight is linear rather than 

geometric (as in the estimation of the current position).  Since the above test 

statistic is a linear function of normal random variables T  is normally 

distributed and it is easy to obtain the critical value for a size o test 

and the power function.  These functions are given in the paper of Chernoff and 

Zacks [14] with some numerical illustrations. 

The above results of Chernoff and Zacks were later generalized by Kander and 

Zacks [36] to the case of the one-parameter exponential family, in which the 

density functions are expressed, in the natural parameter form as 

f(x;9) - h(x) exp {0U(x) + iji(e)}  (see Zacks [70; pp. 95]). Again, Kander and 

Zacks established that the Bayes test of H , for small values of 6 when 9-. 

is known, is of the form (3.1), where X.  are replaced by U(X ) (i«l,...,n). 

The exact determination of the critical levels might require a numerical approach, 

since the exact distribution of T  is not normal, if U(X.) are not normal. 
n i 

Kander and Zacks showed how the critical levels and the power functions can be 

determined exactly, in the binomial and the negative-exponential cases.  If the 

samples are large, the null distribution of T  converges to a normal one, 
n 

according to the Lapunov version of the Central Limit Theorem (see Fisz [20; pp. 202]). 

Kander and Zacks [36] provided numerical comparisons of the exact and asymptotic power 
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functions of T , in the binomial and the negative-exponential cases. 

It is often the case that the sample size is not sufficiently large for the normal 

approximation to yield results close to the true ones.  For this reason, Kander 

and Zacks tried to approximate the exact distribution of T  by the Edgeworth 

expansion 

Yi „  /-n     Y« 
(3.2) FQ(Z) - *(Z) - -|*S *

(3)(Z) + -|*S $(4>(Z) 

+ (IOYJ /6!) *(6)(Z) 
l,n 

where F (Z)  is the exact distribution of the standardized test statistic 
n 

Z = (T -E{T })/(Var {T }K ; *(Z)  is the standard normal cd.f.;  *'V)(Z) is 
n    n   n        n 

3/2 2 
the v-th derivative of *(Z)  and Y-i  *  y, /(u_ )   , Yi  • V,     /y-, -3 l,n    J,n   z,n       z,n   4,n  Z,n 

where p.   is the j-th central moment of T 
J.n n 

It was shown that when the samples are not large (n»10) the Edgeworth expansion 

of the c.d.f. of Z , under the alternative hypothesis H- , provides power 

function approximation better than those of the normal approximation.  Hsu [34] 

utilized the above test for testing whether a shift occurred in the variance 

of a normal distribution. 

Gardner [21] considered the testing problem of Hn versus H1  for the 

normally distributed random variables, but with 6*0 unknown.  He showed that 

the Bayes test statistics, with prior probabilities II  , t=l,2, ,n-l , is 

n-1    n-1 
(3.3) 5n " lx h ^l  (Xj+l - VI 

11-1 9  —*     —  9 I n,. (n-tr a*   - xy •j«  t        n-t   n 
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—* — 
where X    is the mean of the last n-t observations and X  is the mean of 

n-t n 

all n observations.  Gardner investigated the exact and the asymptotic distribu- 

tions of Q  , under the null hypothesis H.. and under the alternative H.. , for 

the case of equal prior probabilities.  Scaling Q  , so that its expected value 
n 

2 
will be 1 for each n , by the transformation Y » (6n/(n -1))Q  , n-2,3,..., 

n n 

we obtain that, under H„ , Y  is distributed like On 

n;x     2 
I    X.U   , where U ,... ,U .  are i.i.d. standard normal r.v.'s and 
»l 

2 -2 
(3.4)      A, = —£—_- 2 £T— 

COS
 (kir/2n)]     ,  k-1, ..., n-1 

IT (n -l)k 

Thus, as n •* =° , the asymptotic distribution of Y  , under H- , is like that of 
n u 

(3.5) r.-^j    i    ^ . 
IT  k=l k 

The distribution of Y is that of the asymptotic distribution of Smirnov's 

2 
statistic w  , normalized to have mean 1 .  Smirnov's statistic compares the 

empirical c.d.f. of a sample of continuous random variables to a particular 

distribution,  F (x) .  More specifically, if X/1X < ... $ X, »  is the order 
° (1) (n) 

statistic, corresponding to n i.i.d. random variables, and if F (x)  is the 
n 

corresponding empirical c.d.f., i.e., 

n t 

Smirnov's statistic is v*> * ^1{x«) *x K x(i+i>} i • 

i»i       j 

- 16 - 
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Gardner refers the reader to Table VIII of VonMlses [66] for the critical values 

of Y , for large n .  Critical values c (a) , for a».10,.05 and .01 and 
n n 

various values of n , can be obtained from Figure 1 of Gardner's paper. 

Gardner showed also that, under H. , the p.d.f. of Y  is 0 n 

(3.7)    f (y) - -J- 1  n (l+t2a"2)_Jt cos (ty-i £ tan 1 ta"1)dt 
J k-1      K Z k-1       K 
o 

2 
where a, • —  cos  (kir/2n) , k«l,...,n-l .  The integration of f (y) 

for the determination of its (l-a)th fractile,  c (a) , requires special numerical 

techniques.  The power function of the test was determined by Gardner in some 

special cases by simulation. 

Sen and Srivastava [56] discussed the statistic 

.  n-1 n-1     „ 
(3.« Un - Jjp I    H    X  )2 

n  i*l j-i 3  * 

n-1 
I 

n~    i=l 

,  n-l     o _*  . 

T 1   *^>  (Xn-i>' 

for testing H  versus H  with 5*0 , when the initial mean, u_ , is known. 

They showed that the asymptotic distribution of U  , under Hn , has the c.d.f. 

(3.9) F(Z) - JL I     (-DJ -ÜM. (1 _ , (Jgt.), 
{it    j-0 J • ^2Z" 
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In addition, they derived the c.d.f. of U  for finite values of n , and provided 

a table in which these distributions are presented for n»10,20,50 and • 

(asymptotic). 

In addition, Sen and Srivastava proposed test statistics which are based on the 

likelihood ratio test. More specifically, for testing Hn versus H.. , with 

6 > 0 , when p  is unknown, the likelihood function, when the shift is at a 

point t , is 

(3.10)  L (X ) =  \JY- exp {-h  C I    (X -X )* + \      (X -X* )2]} 
(2Tr)n/^ 1=1  X  C    i-t+1 

It can be easily shown that the likelihood ratio test statistic is then 

(3.11) An =  sup  (X -X* J/(-J- + —V">* 
n  l<t<n-l  C n_t   C    n_t 

Power comparisons of the Chernoff and Zacks Bayesian statistic T  and the 

likelihood ratio statistic A  are given for some values of n and point of 

shift T .  These power comparisons are based on simulations, which indicate 

that the Chernoff-Zacks Bayesian statistic is generally more powerful than the 

Sen-Srivastava likelihood ratio statistic when T ~ n/2 .  On the other hand, 

when T is close to 1 or to n , the likelihood ratio test statistic is more 

powerful. 

Bhattacharyya and Johnson [9] approached the testing problem in a non- 

parametric fashion.  It is assumed that the random variables X.,X„,...,X  are 
i 2. n 

independent and have continuous distributions F (i»l,...,n) .  Two types of 

- 18 
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problems are discussed.  One in which the initial distribution,  F  , is known and 

is symmetric around the origin.  The other one is that in which the initial 

distribution is unknown and not necessarily symmetric.  The hypotheses corresponding 

to the shift problem when F. is known is H„: F. • ... » F  ,  for some specified 0 0  0        n 

F  in F • {F:F continuous and symmetric about 0} 

versus 

Hl: F0 = Fl = ••• = Fx " Fx+1 = Fn  '  SOme F0 e F0  • 

T is an unknown shift parameter.  F > F..  indicates that the random variables 

after the point of shift are stochastically greater than the ones before it. 

For the case of known initial distribution Fn(x) , the test is constructed with 

respect to a translation alternative of the form F  (x) = F (x-A) , where 

A > 0 is an unknown parameter.  The problem is invariant with respect to the 
i 

group of all transformations x. = g(x.) , i=l,...,n , where g(x)  is continuous, 

odd and strictly increasing.  The maximal invariant statistic is  (R.,...R ) and l    n 

(J..,...J ) , where R. • rank of |X | (i=l,...,n) , and J. • 0 if sgn(X ) • -1 , 

J. » 1 if sgn(Xi) = 1 . 

The average power of a test is thus 
n 

<HA) = I    q *(A|i-l) 
i=l x 

where ^(A|t)  is the power at A , when the shift occurs after t observations, 

q ,...,q  are given probability weights  (q > 0, Zq »1) .  Bhattacharyya and 

Johnson proved that, under some general smoothness conditions on the p.d.f. 

f_(x) , the form of the invariant test statistic, maximizing the derivative of 

the average power i|/(A)  at A"0 , is 

- 19 - 
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(3.12) 

Tn = I    Qt sgn (X±)  E{-fg (V(Ri})/f0 (V(R1})} 

where V   & ...  S V is an ordered statistic of n i.i.d. random variables 
n 

having a distribution Fn(x) , and Q. = T q  . More specific formulae for the 0 
j-1 J 

cases of double-exponential, logistics and normal distributions are given.  The 

null hypothesis H  is rejected for large values of T  .  It is further proven 

n 
that, any test of the form T - \    Q sgn (X.) U(R.) , where U is a strictly 

i=l        x    x 

increasing function, is unbiased. Moreover, if the system of weights 

{q  .;i=l,...,n} satisfies the condition 
n,i 

(3.13) lim ~-    I    Q2  = b2    , 0<b2<» 
a •* •    i=l  ' 

2 r 2       h 
then, the distribution of T /(nb ( J $ (u) dn))  , as n-w , converges to the 

n      0 

standard distribution, where 

(3.14) *(u) - -f'Q   (FQ
1
 (Js(u+l))/f0 (FQ

1
 (Jj(ttH))) 

Similar analysis is done for the case of unknown initial distribution F  .  In 

this case the test statistic is a function of the maximal invariant  (S,,...,S ) 
l    n 

which are the ranks of  (X.,...,X ) .  The test statistic in this case is of the i     n 

general form 

(3.15) T* - I  Q E{-f'(V(Si))/f(V(Si))} 
"  i=l 1 
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In the normal case, for example, with equal weights for f2,...,n and weight 
*   n 

0 for t»l , the test statistic is T - £  (i-l)S  . 
n  i-1 

Notice the similarity in structure between the statistic T  and that of Chernoff 

and Zacks,  T  .  The difference is that the actual values of X.  are replaced by 
n i 

their ranks,  S. . 

Hawkins [23] also considered the normal case, with two sided hypothesis, both 

6- and 5 unknown. Like Sen and Srivastava, he considered the test statistic 

Ü •  max   |T, |  , where 
n  l<ksn-l  k 

(3.16) i k(n-k) I    (\~\)   ,  k-l,...,n-l 
i-1 

The statistics T.,...,T n  are normally distributed, having a correlation 

function 

(3.17) p(Tm>V 
/~~m(n-k) 7 

k(n-m) , m<k 

Hawkins provides recursive formulae for the exact determination of the distribution 

of U .  Conservative testing can be made by applying the Banferroni inequality 

P{ max   |T I > c} <•  (n-1) P{ IT | > c} 
lsksn-1 

- 2(n-l) * (-c) 

Hence, a conservative a level test of H.. can be based on the critical level 

zi  //o  o\ • where Z  is the y-fractile of the standard normal distribution. l-a/(2n-2) y 
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A numerical example Is given Co compare the exact and the Banferroni approximation 

to the critical values of the test statistic U  .  In an attempt to understand 

the asymptotic properties of U  , Hawkins considered the behavior of the maximum 

of a Gaussian process having the same covariance structure as that of I_,T_,... 

The asymptotic results are still not satisfactory. 

Pettitt [50] discussed non-parametric tests different from those of 
t   n 

Bhattacharyya and Johnson.  He defined for each t«=l,...,n , U   • >   >  sgn(X -X ) 
C'n  i-1 j-t+1     X J 

and studied the properties of the test statistic 

(3.18) 
K - max  |U   I 
n  l*t*n  t'n 

The distribution of K  was studied for Bernoulli random variables. 
n 

4.  Estimating the Location of the Shift Point 

Two types of estimators of the location of the shift point, T , appear in 

the literature:  Bayesian and maximum likelihood.  El-Sayyad [17], Smith [62], 

Broemeling [11], Zacks [70; pp. 311] and others, give the general Bayesian 

framework for inference concerning the location of the shift point, T , in an 

AMOC model. 

Hinkley [28] studied the maximum likelihood estimator.  We start with an 

example concerning the Bayesian estimation and proceed then to present Hinkley's 

results. 

4.1 Bayesian Estimation of the Change Point 

The Bayesian procedure is to derive the posterior distribution of the change 

point  T , and determine the estimator which minimizes the posterior risk, for a 

specified loss function. 

22 - 



'- • 

T-465 

If the loss function for estimating T by T  is L(T,T) • |T-T| , then 

the Bayes estimator of the change point is the median of the posterior distribution 

of  T , given X  .  For example, suppose that X..,...,X  are independent random 

variables having normal distributions N(9.,l) , where 

" 9T " 60 X+l 
e -e^ + 6 n   0 

with 9n known (9^-0 say).  Furtherfore, assume that the prior distribution of 

2 
5  is normal,  N(0,a ) , independently of T , and  x has prior probabilities 

II(t) » P{x»t} , t-l,...,n .  Here  {x»n}  indicates the event of no change. 

The posterior probabilities of x for this model are 

2 %  {  Ct)2(n-t)2°2l 
JI(t) (l+(n-t)0\xpi D-E— 5 > 

1}     n(t x ) = \   2(l-Kn-t)a2)  A 

\        2     (l+(n-j)o2)( 

I  n(j)(l+(n-j)o2) exp) (Vl) 

j-l 

-*      1    ? where X „ •  —-  )  X.  is the average of the last  (n-t)  observations. n-t   n-t  1=£+1 i 

The median of the posterior distribution is then the Bayes estimator of x , 

namely 

(4.2) x(X ) • least positive integer  t , such that ~n 

I   n(i|x ) s .5 
i«0   ~n 

In the following table we present the posterior probabilities (A.l) computed for 

the values of four simulated samples.  Each sample consists of n=20 normal variates 

with means  9  and variance 1 .  In all cases  9n«0 .  Case I consists of a 

sample with no change in the mean,  6«0 .  Cases II-IV have a shift in the mean 

at  x-10 , and 6-.5, 1.0 and 2.0 .  Furthermore, the prior probabilities of x are 
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n(t) - p(l-p)C 1    for t-l,...,n-l and n(n) - (l-p)n_1 , with p-.Ol ; and the 

prior variance of 5 is a  »3 . 

Table 4.1 Posterior Probabilities of  {t-t} 

t 6 0 .5 1.0 2.0 

1 0.002252 0.012063 0.003005 0.000000 
2 0.004284 0.016045 0.002885 0.000000 
3 0.004923 0.016150 0.002075 0.000000 
4 0.006869 0.022634 0.002193 0.000000 
5 0.006079 0.008002 0.002202 0.000001 
6 0.004210 0.006261 0.002291 0.000050 
7 0.004020 0.006735 0.001954 0.000026 
8 0.002867 0.015830 0.001789 0.000015 
9 0.003534 0.015914 0.001959 0.001087 

10 0.002972 0.011537 0.002228 0.068996 
11 0.003033 0.019014 0.002708 0.908434 
12 0.003070 0.010335 0.002661 0.016125 
13 0.003395 0.006026 0.002996 0.005237 
14 0.003087 0.003201 0.003017 0.000009 
15 0.004064 0.003461 0.003096 0.000011 
16 0.003355 0.002709 0.002820 0.000009 
17 0.004991 0.002899 0.003078 0.000000 
18 0.009664 0.003486 0.004004 0.000000 
19 0.007255 0.006106 0.012432 0.000000 
20 0.916077 0.811593 0.940607 0.000000 

We see in Table 4.1 that Bayes estimator for Cases I-III is T-20 (no change), 

while in Case IV it is T-11 . That is, if the magnitude of change in the mean 

is about twice the standard deviation of the random variables, the posterior 

distribution is expected to have its median close to the true change point. 

In many studies (for example, Smith [62]) the Bayesian model is based on 

the assumption of equal prior probabilities of {x-t} .  Such prior probabilities 

yield in the above cases the following posterior probabilities. 
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Table 4.2.  Posterior Probabilities of {x-t} , for Equal Prior Probabilities 

t 6 0 .5 1.0 2.0 

1 0.023329 0.030693 0.019734 0.000001 
2 0.020209 0.031206 0.037996 0.000006 
3 0.024060 0.028078 0.125330 0.000035 
4 0.023996 0.024921 0.081694 0.000149 
5 0.023063 0.026290 0.083705 0.002859 
6 0.022546 0.030888 0.111434 0.005653 
7 0.022951 0.042321 0.079959 0.001071 
8 0.029850 0.036347 0.059293 0.005238 
9 0.043298 0.030515 0.026376 0.029615 
10 0.043976 0.031933 0.069415 0.931462 
11 0.052939 0.033107 0.020594 0.014332 
12 0.059540 0.037187 0.034396 0.008651 
13 0.065588 0.048819 0.033543 0.000431 
14 0.037356 0.040960 0.052289 0.000457 
15 0.060050 0.049399 0.043785 0.000037 
16 0.055957 0.055566 0.048865 0.000004 
17 0.049753 0.069433 0.022328 0.000000 
18 0.050994 0.085113 0.034621 0.000000 
19 0.156117 0.092993 0.012691 0.000000 
20 0.134429 0.174230 0.001955 0.000000 

As seen in Table 4.2, the Bayes estimator T when <5=2 is exactly at the true 

point of change x»10 .  On the other hand, when 6=0 the estimate is T-16 . 

Smith derived formulae of the Bayes estimators for cases of sequences of 

Bernoulli trials [62], and for switching linear regression problems [63]. 

Bayesian estimators for the location of the shift parameter for switching 

regression problems are given also by Ferriera [19], Holbert and Broemeling [32], 

Tsurumi [65] and others. 

4.2 Maximum Likelihood Estimators 

Let X ,X~,-.-,X  be a sequence of independent random variables. As before, 

assume that 

and 

1* 2'*""' T "* 0 

X
T+1 Xn ~Vx) 
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where Fn(x)  and F.(x)  are specified distributions,  T  is the unknown point 

of shift.  The maximum likelihood estimator (MLE) of  T  is 

(4.3) T • least positive integer t 

t-l,...,n , maximizing S   . where n,t 

n n 
I    log fn(X.) + I      log f,(X.)      , if t-l,...,n-l 

1 i-1     U 1        i-t+1 

Sn,t 

n 
I    log f (X ) , if t-n 

i-1     u x 

fQ(x)  and f^x)  are the p.d.f.'s corresponding to F«(x)  and F (x) .  We 

present here the method of deriving the asymptotic distribution of T  , as 
n 

n and T •* » , following the development of Hinkley [28]. 

Let U± = log f0(X±) - log fjO^)   ,   i-1,2 n 

t       n 
Since S   = £ U + £ log f,(X.)   , it readily follows that t  is the least 

n'C  i=l x  i=l     i * n 

t 
positive integer maximizing V • £ U   (t-l,...,n) .  Consider the sequence 

C  i-1 X 

W = V - V  , where  T is the true point of shift.  For very large value 

of T  (x-x»)  consider the backward and forward sequences 
k 

W - {0, -u, -u-u ,, ...,- I    u, ...} 

and 
k 

W - {0, U    .... I    U    ...} 
j=0   J 
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Let M • sup 
Osksx 

C- I UT ,}  and  M - sup { £ u .J 
j*0 T_J Osk<» j-0 T J 

and Yj = -UT_j+1 , Yj - UT+j   ,  J-1, Thus, 

W - {0,Y1,Y1+Y2,...}   , w' - {O.Y^.Yj+Y^,...} 

Let T be the point at which Max{M,M } occurs.  Notice that 

(4.5) 

{T - T} H {M = M - 0} 

{T - T+k} = {M >0 and M >M} 

{T - T-k} s {M>0 and M>M } 

Accordingly, since the sequences W and  W  are independent, 

T-465 

(4.6) 

and 

P{T = T} - P[M-0]P[M -0] 

P{T = x+k} - P{M >0, M >M, I -k} 
i 

P{T = T-k - P{M>0, M>M , I=k} 

where 

I - inf {k ; M - I    Y } 
J-1 J 

I - inf {k; M - \    Y } 
j-1 J 

Thus, let ßk(x)dx - P{I-k, x^M£x+dx} and ßk(x)dx - P{1 -k, x£M sx+dx} . 
i t 

Furthermore, let a(x) and a (x)  be the c.d.f. of M and M , respectively. 

Then 

(4.8) 

and 

P{T • t} • o(0)a (0) 

P{T - T+k} - J 8k(x)a(x)dx 
O 

00 

P{T - T-k} - J 0. (x)a (x)dx 

27 
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5.  Dynamic Control Procedures 

There are numerous papers on dynamic control problems, all of which deal in 

one way or another with the problem of shift at unknown time points.  In particular 

we mention here the papers of Girshick and Rubin [22], Bather [7,8] Lorden [43], 

Yadin and Zacks [68], Shiryaev [60,61], and Zacks and Barzily [69], 

We present first the Bayesian theory, followed by discussed of the CUSUM 

procedure. Again, we consider a sequence of independent random variables 

X
1»
X2 Xm-l,Xm'"•'  Let T be the Point of shift, t =0,1,...  .  If x < 1 , 

all the observations are from F..(x) .  If T = t  (t=2,3,—)  then the first 

t-1 observations are from FQ(x)  and X ,X .,...  are from FAx)   .  Let  fQ(
x) 

and f.(x) be the p.d.f. corresponding to FQ(x)  and F (x) , respectively. 

The random variables X1fX„,...  are observed sequentially and we wish to apply 

a stopping rule which will stop soon after the shift occurs, without too many 

"false alarms".  The following objectives are considered in the selection of a 

stopping variable N: 

1) If II(T)  denotes the prior distribution of  x , then the prior risk 

(5.1) R(n,N) - Pn(N<x) + c Pn(N*x) E {N-tlNa-r} 

is minimized, with respect to all stopping rules. 

2) To minimize E {N-x|N£x}  subject to the constraint P (N<x) <, a   , 

0<a<l  . 

- 28 - 
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5.1 The Bayeslan Procedures 

The shift index,  T , is considered a rancom variable, having a prior p.d.f. 

n(t) , concentrated on the non-negative integers.  Shiryaev [60] postulated the 

following prior distribution 

n , if t-0 

(5.2) n(t) = 

(l-n)p(i-p) 
t-1 , if t-1,2,... 

for 0<H<1 , 0<p<l  .   (JI+(l-IT)p)  is the prior probability that the shift has 

occurred before the first observation, and p is the prior probability of a shift 

occurring between any two observations. 

After observing X..,...,X , the prior p.d.f.  n(t)  is converted to a 

posterior probability function on {n,n+l,...} , namely, 

29 - 
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(5.3)        n„(t): n 

, t-n 

(i-nn) pd-p)'"
1     , t-n+1,... 

where I  is the posterior probability that the shift took place before the n-th 

observation. This posterior probability is given by II - 1-q  , where 

«•*> «„ • P-V1-^'  ! w 
and 

D   = (n+(i-n)n) n   f,(x ) + 
i-1    X 

n-1 j 
(5.5) (l-n)p    T     (l-p)J (i-n)p   I   a-?)3   n   fn(x.)      n    f.(x.) + 

j-l i-l    °    i    i'-j+l    2    * 

(i-n) (i-P)n   n   f (x.) 
i-l   u   x 

Let    R(X±)  - f1(Xi)/fQ(X1)   ,   1-1,2,.,.     then 

(5.6, Vl <1-"'   <1-">^1  
R(Vi> tv«-» O-P> ] + Vi 

where 

Bn+1 " R(Xn+l)   (1_II)   (1'P)n P +  (1"n>   d-P)n+1 

But     (1-H)   (l-p)n * q D       .     Hence, 
n n 

30 
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(5.7) 
qn (1-P) 

'n+1 R(Xn+1) (l-qn(l-p)) + qn (1-p) 

or 

(5.8) 
(nn + d-nn)p) R(xn+1) 

'n+i " (nn+ (i-nn)P) Rtt^) + (i-nn) d-P) 

n = 0,1,...  with n0 • II and qQ - 1—II .  Accordingly, the sequence of 

posterior probabilities  {n ;m0}     is Markovian, i.e., the conditional distribution 

of n ,,  depends on the first n observations X,,... ,X  , only through n  . 
n+1 Inn 

This can lead immediately to the construction of recursive determination of the 

distrubiton of any stopping variable depending only on n   (see Zacks [71]). 

Shiryaev [60] has shown that when F  and F..  are known, the optimal stopping 

variable, with respect to the above objectives, is to stop at the smallest n 

for which II > A  , for some 0 < A < 1 . 
n 

Bather [7] has shown that for the constraint of bounding the expected number of 

*       -1 
false alarms by N , A • (N+1)   is the optimal stopping boundary. 

When the distributions F_ and F^ are not completely specified, the 

above problem of finding optimal stopping variables becomes much more complicated. 

Zacks and Barzily [69] studied Bayes procedures for detecting shifts in the 

probability of success,  6 , of Bernoulli trials, when the values 6. , before 

the shift, and the value 9.  after it, are unknown.  The Bayesian model assumed 

that  8Q and 6.  have a uniform prior distribution over the simplex 

{(•Q»9J)S 0<eo$ei<l}  and the point of shift,  x , has the prior distribution (5.2.). 

In this case, the posterior probability II  depends on the whole vector of 

observations X..,... ,X_ , and not only on II ,  and X  .  It is shown that this 
•i-     n n—i       n 
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posterior probability is a function of    X    »  (X..,...,X )     given by 

(5'9) n-1 
nn  V  " 1 ~   (1_II)   (1'P) B(Tn + X  '  n " Tn + 2)/1W 

where B(p,q)  is the beta-function; 

and ri " I    Xi J  i=l x 

(5.10) 

W = n B(Tn + 2 • n " Tn + 1} + 

(l-n)p I    (1-P)j_1 B(T<°> + , n - j - T^ + 1) . 

T(n) 
n-j 

i-0\    i J B(T + 1 , n - T + /   n n 2) 

+ (1-n) (l-p)n_1 B(T + 1 , n - T + 2) 
n n 

Here,  T  . - T -T.  (j«0,...,n) . The sequence {II (X ); n>l}  is not Markovian, 
n-j   n j n ~n 

but is a submartingale.  Zacks and Barzily considered the problem of determining 

the optimal stopping rule under the following cost conditions: 

After each observation we have the option to stop observations and declare that a 

shift has occurred. The process is then inspected.  If the shift has not yet 

occurred a penalty of 1 unit is imposed.  If, on the other hand, the shift has 

already occurred, a penalty of C units per delayed observation (or time unit) 

is imposed.  It is shown then that the optimal stopping variable is 

(5.11) 
N =- least nsl , such that JI (X )>b (X )      , 

n ~n  n ~n 

where the stopping boundary b (X )  is given implicitly, as the limit for 

- 32 - 
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j  -»• OB   Of 

(5.12) 

* 

b^j;(Xn) = min (n -  " - ~"  , 1) 
n  ~n L.Tp 

,<J>. with n • p/(C+p)  and the functions M J (X )  can be determined recursively, 

according to the formula 

(5.13) m 

K ou= E{min <°«c n«j.i<x„»x^.i> n  ~n n+i ~n n+l 

-P(1 " WM*!» + Vl  ^n'Vl» '*n} 

It is very difficult, if not impossible, to determine these functions explicitly, 

for large values of j . The authors therefore considered a suboptimal procedure 

(2) 
based on b  (X )  only.  Numerical simulations illustrate the performance of 

the suboptimal procedure. 

5.2 Asymptotically Minimax Rules and The CUSUM Control 

Lorden [42,43] considered the sequential detection procedure from a non- 

Bayesian point of view and proved that the well known CUSUM procedures of Page 

[47,48,49] are asymptotically minimax. 

Let X^X-,... be a sequence of independent random variables.  The 

distributions of X,,...,X .  is F,,(x) and that of X »X.,,...  is F, (x) . 
J.     m-1      u m m+i I 

The point of shift m is unknown,  F (x)  and F (x)  are known.  The family 

of probability measures is  {P ; m-1,2,...} , where P (X )  is the joint p.d.f. 
m m ~n 

of X • (X.. X ) , in which X  is the first random variable with a c.d.f. 
~n    x     n m 

Fx(x) . 
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It is desired to devise a sequential procedure with a (possibly) extended 

stopping variable, N , (i.e., lim P [N>n] > d>0  ,  m-0,1,...) which minimizes 

the largest possible expectation of delayed action, and does not lead to too many 

false alarms. More precisely, if Pn(X)  denotes the c.d.f. under the assumption 

that all observations have F
000 as a c.d.f. ; and if E {.} denotes expectation 

under P (.) , the objective is to minimize 

(5.14) 
E-{N} - sup ess sup E {(N-ra-1) IF ,} 

.L      ^, m m-1 
m>l 

subject to the constraint 

(5.15) E.{N} > Y*  ,  1<Y*<» 

E {'IF  } denotes the conditional expectation given the o-field generated by 

(X,,.,.,X ,) .  It is proven by Lorden [43] that an asymptotically minimax 

procedure, as y-» , is provided by Page's procedure, which is described below. 

Let R(Xi) = f1(X1)/fQ(Xi)   ,  1-1,2,... where f^x)  is the p.d.f. 

corresponding to F (X) , i=0,l . Let 

S =  )  log R(X ) , k=l,2,...  and T = S - min S, .  Then for y  * log y 
^  i=l n   n  ksn k 

(5.16) Ä 

N • least n>l such that T >v , 
n ' 

is Page's (extended) stopping variable. 

The statistic T  can be computed recursively by the formula 

(5.17) 

' 

Tn+1 " (Tn + lQ8 R(Xn+l
))+  ' n-°'1' 

T0 5 0 
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The above detection procedure can be considered as a sequence of one-sided Wald's 

SPRT with boundaries  (0,y) • Whenever the T  statistic hits the lower boundary, 

0 , the SPRT is recycled, and all the previous observations can be discarded.  On 

the other hand, for the first time T >y    the sampling process is stopped.  The 

repeated cycles are independent and identically distributed.  Thus, Wald's theory 

of SPRT can be used to obtain the main results of the present theory. 

Let a and ß be the error probabilities in each such independent cycle of 

Wald's SPRT ; i.e.,  a = P_[T >y] and  ß = P,[T -0].  Let N,  be the length u n in l 

of a cycle.  Accordingly, 

(5.18) 

VN*} - -r W 
and 

VN*} • iV w 
*   i Set y    •  , then the constraint (5.15) is satisfied, since E,{N-}sl . a 11 

*   —  * 
Moreover, Lorden proved that E {N } • E..{N } .  Finally, applying well known 

results on the expected sample size in Wald's SPRT, we obtain 

(5.19) 
,{N*} ~ log a as a •*• 0 

where I = E  {log  . ,^,  } is the Kullback-Leibler information for 

discriminating between F_ and F.. . 

The right hand size of (5.19) was shown to be the asymptotically minimum expected 

sample size.  Thus, Page's procedure is asymptotically minimax. 
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In [42] Lorden and Eisenberg applied the theory presented here to solve a problem 

of life testing for a reliability system.  It is assumed that the life length of 

the system is distributed exponentially, with Intensity (failure-rate)  X . At 

an unknown time point,  9 , the failure rate shifts from A  to A(l+n) , 

•i * 0<n-,^n^no
<00  • Approximations to the formulae of E,,{N } and E {N } are i   i u n 

given, assuming that A  is known.  By proper transformations of the statistics 

the detection procedure can be applied also to cases of unknown A . It is 

interesting to present some of the numerical results of this study. For the case 

of  A=l and  o=l/cr the expected number of observations required is 

n Y VN} E {N} 
n 

.4 20 422 48 

.6 50 676 36 

.9 40 342 20 

Page's CUSUM procedure is thus very conservative, relative to the Bayes procedures 

which detect the shifts fast, but have also small E.{N} . 
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